(x^2-2)-4(x^2-2)+4=0

Simple and best practice solution for (x^2-2)-4(x^2-2)+4=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2-2)-4(x^2-2)+4=0 equation:



(x^2-2)-4(x^2-2)+4=0
We multiply parentheses
-4x^2+(x^2-2)+8+4=0
We get rid of parentheses
-4x^2+x^2-2+8+4=0
We add all the numbers together, and all the variables
-3x^2+10=0
a = -3; b = 0; c = +10;
Δ = b2-4ac
Δ = 02-4·(-3)·10
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{30}}{2*-3}=\frac{0-2\sqrt{30}}{-6} =-\frac{2\sqrt{30}}{-6} =-\frac{\sqrt{30}}{-3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{30}}{2*-3}=\frac{0+2\sqrt{30}}{-6} =\frac{2\sqrt{30}}{-6} =\frac{\sqrt{30}}{-3} $

See similar equations:

| 22+3x=8x+3 | | 5x+4=31*2x | | 4x-18=5x+10 | | 9-3x=3(x-3) | | 4/3=-6e-5/3 | | x4−3=4 | | 〖4(x〗^2+6)+35x=0 | | 3^2x-3=0.2^x-1 | | 18+6m=12m+12 | | 10x(−5)=30 | | 8x-20=7x+10 | | X-20x+12=50 | | 10x−5=30 | | (3x-30)=x+90 | | 4x+31.2=36 | | 4x+31.2=16 | | 5(2x+3)=8 | | 4z/7+2=3 | | 4x-20.8=16 | | x+24+16=x+16 | | 10(x-7)=-102 | | 4x-5=3+2(x+1) | | 3x-4=10x+2 | | 3p+15=7+4p | | 4x+15=33−2x | | 8y-40=3y-10. | | 3) 4x+15=33−2x | | 4x + 15 = 33 − 2x | | 2=2b= | | 4/(x+5)=x/(x+3) | | x²=19 | | -1.25x²+35x-225=0 |

Equations solver categories